ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 


Появилась возможность управлять механическими свойства-
ми металлов, в частности, процессом обработки металлов давле-
нием. Например, деформировать вольфрам при температурах не
превышающих 200 гр.С и получить из него прокат с высоким ка-
чеством поверхности. В экспериментах с импульсным током было
найдено, что электрический ток увеличивает пластичность и
уменьшает хрупкость металла. Если создать хорошие условия
теплоотвода от деформируемых образцов и пропускать по ним ток
высокой плотности 10 в4-ой 10 в6-ой а/см./2 то величина эф-
фекта будет будет порядка десятков процентов. Электрический
ток вызывает также увеличение скорости релаксации напряжений
в металле и оказывается удобным технологическим фактором для
снятия внутренних напряжений в металле. Электропластический
эффект также линейно зависит от плотности тока (вплоть до 10
в5-ой а/см./2 ) и имеет большую величину при импульсном токе,
а при переменном вообще не наблюдается.
Видна связь явления разупрочнения металла при сверхпро-
водящем переходе с электропластическим эффектом. В этом и
другом случае происходит разупрочнение металла. Однако, если
в первом случае в основе явления лежит уменьшение сопротивле-
ния движению и взаимодействию дислокаций при устранении из
металла газа свободных электронов,во втором случае причиной
облегчения деформации является участие самого электронного
газа в пластической деформации металла. Электронный газ из
пассивной и тормозящей среды превращается в среду, имеющую
направленный дреф и поэтому ускоряющую движение и взаимодейс-
твие дислокацийе (или снижающую обычное электронное торможе-
ние дислокаций) Этот эффект уже находит свое применение на
практике:

А. .. : "Способ снижения прочности металлов, напри-
мер,при пластической деформации при котором через заготовку
пропускают электрический ток отличающийся тем, что с целью
снижения прочности металла при сохранении его низкой темпера-
туры, к заготовке прикладывают импульсы тока плотностью преи-
мущественно 10 а/см./2, с частотой подачи 20-25Гц.


2.1.3. Ф о т о п л а с т и ч е с к и й э ф ф е к т .
Естественно ожидать изменение пластических свойств и
при других воздействиях на электронную структуру образца.
Например, воздействие светового излучения на кристалы полуп-
роводника вызывает в них перераспределение электрических за-
рядов. Не будет ли свет влиять на пластические свойства по-
лупроводников? Советские ученые Осиньян и Савченко на этот
вопрос отвечают утвердительно. Их открытие зарегистрировано
под номером 93 в такой формулировке:
"Установлено ранее неизвестное явление,заключающееся в
изменении сопротивления пластической деформации кристаллов
полупроводников под действием света, причем максимальное из-
менение происходит при длинных волн, соответствующих краю
собственного поглащения кристаллов".
В их опытах образцы полупроводников сжимались и растя-
гивались до наступления пластической деформации. Затем обра-
зец освещался светом. Вызванное им перераспределение носите-
лей заряда оказывало тормозящее действие на дислокации
носителей пластической деформации и тотчас прочность образца
увеличивалась почти вдвое. Стоило выключить свет, как проч-
ность уменьшалась и вскоре достигала своего первоначального
значения.
Дальнейшие исследования привели к наблюдению еще одного
интересного явления - и н ф р а к р а с н о г о гашения фо-
топластического эффекта.
Эффект фотопластичности предполагается использовать для
разработки нового типа элементов автоматики, новой тех-
нологии полупроводнико,для создания качественно новых
приемников видимого светового и инфракрасного излуче-
ния.

2.1.4. Э ф ф е к т Б а у ш и н г е р а .

При упругих деформациях перемена знака внешнего усилия
вызывает только изменение знака деформации,без изменения ее
абсолютной величины. Если же под влиянием внешних усилий в
металле возникают дислокации,т.е. наступает режим пластичес-
кой деформации то упругие свойства металла изменяются и начи-
нает сказываться влияние знака первоначальной деформации. Ес-
ли металл подвергнуть слабой пластической деформации
нагрузкой одного знака,то при перемене знака нагрузки обнару-
живается понижение сопротивления начальным пластическим де-
формациям (эффект Баушингера). Возникшие при первичной дефор-
мации дислокации обуславливают появление в металле остаточных
напряжений, которые складываясь с рабочими напряжениями при
перемене знака нагрузки,вызывают снижение предела пропорцио-
нальности,упругости и текущести материала. С увеличением на-
чальных пластических деформаций величина снижения механичес-
ких характеристик увеличивается. Эффект Баушингера явно
проявляется при незначительном начальном наклепе.Низкий от-
пуск наклепанных материалов ликвидирует все проявления эффек-
та Баушингера. Эффект значительно ослабляется при многократ-
ных циклических нагружениях материала с наличием малых
пластических деформаций разного знака

2.1.5. Э ф ф е к т П о й н т и н г а .

Пойнтингом было установлено,что при закручивании сталь-
ных и медных проволок они не только закручиваются, но также
упруго удлиняются и увеличиваются в объеме. Удлинение прово-
локи примерно пропорционально квадрату угла закручивания: при
заданном значении угла удлинение пропорционально квадрату ра-
диуса.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики