ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

рис. 41) нажали три раза — движок искателя переместился на три шага. Если вслед за этим набрать цифру 7, то движок переместится на десятый контакт, если 8 — то на одиннадцатый, и т. д. Подавая через контакты шагового искателя напряжение, включающее светящиеся цифры от 1 до 10 или 20, мы «научим» модель робота, например, решать простейшие задачи на сложение.
Рис. 41 Генератор звуковых команд
Задачу на вычитание робот может решить, только если шаговый искатель имеет обратный ход. На частоте 280 Гц набирают уменьшаемое число, а на частоте 560 Гц — вычитаемое. Движок искателя укажет разность. Приводя в действие третий мультивибратор, искатель переводят в исходное положение.
Если выходные контакты искателя связать с исполнительными механизмами робота, то с помощью звукового генератора можно управлять не только его «математическими способностями», но и всем механизмом. При необходимости схему можно упростить, оставив в генераторе только один мультивибратор из трёх, а частоты получить коммутацией конденсаторов и резисторов. В зависимости от расстояния между передатчиком и приёмником мощность динамической головки может быть выбрана в пределах 0,1…0,5 Вт.
Настраивать резонансные контуры приёмника на выбранные значения частоты командных мультивибраторов лучше всего с помощью звукового генератора и осциллографа. Но в крайнем случае можно обойтись миллиамперметром на ток полного отклонения стрелки 30…50мА, включённым в цепь выходного реле канала. Настройку ведут по максимуму показаний прибора, когда на вход приёмника подают сигналы с мультивибраторов.
Слуховое устройство «Кобра, танцующая под музыку» по схеме аналогично приёмному устройству робота (см. рис. 42).

Рис. 42. Приёмник звуковых команд
Чудеса активных RC — фильтров. Электрические фильтры являются одними из основных элементов различных радиоэлектронных систем. Это обусловлено тем, что во многих областях науки и техники (радиотехника, акустика, различные отрасли машиностроения, медицина, системы телеметрии и телеуправления) необходимы выделение, подавление, фильтрация сигналов.
До сих пор мы говорили о системах LC — фильтров, в которых резонансные свойства определяются значениями индуктивности L и ёмкости С. Но LC — фильтры, особенно в диапазоне звуковых частот, очень громоздки, и в современных конструкциях их заменяют активными RC — фильтрами.
Активные RC — филътры пригодны для использования в самых различных устройствах. Например, они хорошо работают на весьма низкой (около 1 Гц) частоте среза и имеют добротность выше 100. Активные фильтры можно успешно применять в устройствах, которые сочетают функции модуляции, выпрямления и фильтрации, и в других, где нельзя использовать катушки индуктивности. Слуховые системы с активными RC — фильтрами используют для обнаружения шума на очень большом расстоянии. Их широко применяют при исследовании биотоков мозга и снятии энцефалограмм. С их помощью решают задачи распознавания речевых сигналов в моделях органов слуха и т.п.
Однако теоретические достоинства активных RC — фильтров — это одно, а использование их на практике — другое. Изготовление надёжных активных RC — фильтров оказалось делом гораздо более сложным, чем на первых порах представлялось разработчикам.
Прежде всего для таких фильтров необходим набор деталей с малым разбросом параметров (особенно конденсаторов и резисторов). Важно также исключить временной дрейф транзисторов и пассивных элементов, входящих в устройство.
Активный RC — фильтр, схема которого изображена на рис. 43, можно успешно использовать при конструировании светодинамических установок (СДУ). Как показала практика, этот фильтр в отличие от многих, рекомендуемых для фильтрации частоты в СДУ, является весьма практичным. В нём сравнительно немного транзисторов и деталей; он обеспечивает хорошую фильтрацию даже при значительном разбросе параметров деталей (см. таблицу).

Рис. 43. Схема активного RC — фильтра
Параметры деталей схемы RC — фильтра (рис. 43)
Таблица

Полоса Ёмкость С1 Сопротивление
пропускания, Гц конденсаторов, МКФ резисторов, кОм
С1 С2 СЗ С4 R3 R6

50.. .100 0,2 0,1 1 0,051 10 5,6
100.. .200 0,11 0,05 0,5 0,03 8,2 8,2
200... 400 0,051 0,015 0,2 0,015 9,1 8,2
400... 800 0,03 0,01 0,1 0,0068 8,2 8,2
800.. .1600 0,0115 0,0068 0,05 0,0033 5,6 6,8
1600... 3200 0,0084 0,001 0,025 0,0015 6,8 7,5

Тайна пляшущих человечков.
Мы познакомили читателя с различными электронными устройствами, с помощью которых моделируют системы слуха. С этим багажом можно уверенно двигаться вперёд — использовать модели в создании роботов, принцип работы которых основан на сложных процессах управления. Можно создать увлекательные модели, понимающие различные сигналы и даже умеющие танцевать под музыку. Представьте себе куклу и даже робота, отплясывающих весёлый танец под музыку. Такие чудесные модели ещё не созданы, но они вполне осуществимы.
Музыкальные звуки отличаются громкостью, ритмом, тембром и рядом других параметров. Для различных сочетаний этих признаков можно найти общие танцевальные движения, составить матричные таблицы и установить с их помощью закономерные связи звучаний музыки и движений в танце. Затем с помощью электронных устройств и RC — фильтров создать анализаторы, различающие не только тембр звучания, но и отдельные музыкальные ноты, и с помощью логических устройств научиться управлять движениями модели.

Рис. 44. Запись работы каменщика: а — пример записи некоторых движений, б — мотография записи работы каменщика
Возможно, что вам и матрицу составлять не придётся — это уже сделано в Советском Союзе энтузиастом, мурманским врачом А.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики