ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 


На примере инструментов, сделанных руками человека, мы можем наблюдать немало случаев, когда более подвижный из двух сходных инструментов, будучи явно более трудным для работы, в то же время имеет очень яркие преимущества перед вторым по своей гибкости и по тонкости результатов, получаемых с его помощью. Опытный мастер всегда предпочтет инструмент с большим числом степеней свободы, т. е. с меньшим количеством направляющих перил и подпорок, которые делают работу более спокойной, но зато и сковывают.
В области спорта здесь напрашивается пример велосипеда. Двухколесный велосипед, конечно, несколько труднее для управления, чем трехколесный, но кто хоть раз попробовал езду на нем и одолел вступительную трудность, тот, наверное, уже никогда не захочет пересесть на трехколесный. Не только потому, что двухколесный легче весом, а главное, потому, что в руках опытного ездока он и поворотливее, и гибче, и, как это ни странно, устойчивее трехколесного. Другой сходный пример представляют коньки: «легкие» детские коньки с широким лезвием типа «снегурочки» и острые, более трудные для овладения ими норвежские беговые.
В области музыкальных инструментов интересно, что грубые струнные инструменты вроде балалайки имеют на своих грифах так называемые лады, помогающие новичку не фальшивить; тонкий инструмент сходного типа, скрипка, имеет совершенно гладкий гриф, но ни один уважающий себя мастер игры на скрипке не согласится играть на скрипке с ладами. Ему не нужны внешние «костыли», так как он с гораздо большей уверенностью опирается на , свой слух, на «орган чувств», всегда и везде являющийся основным верным средством к преодолению избыточных степеней свободы.
Природа, как мы видели, шла тем же путем, избегая всяких «ладов» и «подпорок» в органах движения и щедрою рукой рассыпая по ним степени свободы. Природа не ошибается, не ошиблась она и на этот раз.
Трудности, обусловленные упругостью мышц
Мы уже близки к достаточно полному ответу на вопрос, которым начали этот очерк: какая премудрость делает таким сложным управление этим с младенчества привычным нам двигательным аппаратом? Однако нельзя обойти молчанием еще одно осложнение (трудность номер три), создающее новые трудности для управления двигательным аппаратом нашего тела. Это — осложнение, зависящее от упругих свойств мышц.
В ближайшем очерке нам встретится случай рассказать в основных чертах о поперечнополосатой мышце как двигателе, там мы и рассмотрим более подробно ее свойства. Здесь же мы затронем их только вскользь, в той мере, в какой это необходимо для освещения стержневого вопроса всего настоящего очерка.

Мышцы нашего двигательного аппарата, может быть, в большей мере, чем какие бы то ни было другие образования тела, заслуживают названия ткани, присвоенного им на научном языке. Действительно, мышечная ткань, как и подобает ткани, вся состоит из тонких нитей (так называемых мышечных волокон); только эти нити в ней не переплетены между собой, а лежат параллельными пучками, как хорошо расчесанные волосы. Тончайшие ниточки скелетной поперечнополосатой мышцы, не превосходящие в толщину женского волоса, упруго-растяжимы, как резиновые. Каждая из этих нитей обладает способностью сокращаться при действии на нее со стороны нерва, т. е. становиться в течение этого действия короче (процентов на 20 — 30) и туже, неподатливее к растяжениям. Между отдельными мышечными волокнами есть некоторые различия, но во всяком случае они невелики, не больше, чем между разными резиновыми трубками: потолще или потоньше, потуже или послабее, и только. Из наборов сотен таких параллельно лежащих волокон и состоит все наши скелетные мышцы; каждое волокно в них — крохотный элементарный двигатель. Цельную крупную мышцу вроде, например, бицепса руки можно рассматривать поэтому как своего рода многоцилиндровый агрегат с параллельно включенными цилиндрами. Все вообще, чем располагает наш организм для своих активных телодвижений и для совершения работы, — это только эти своеобразно упругие сократимые нити, взятые с сомножителями во многие сотни и тысячи и оснащающие со всех сторон все подвижные пункты тела.
Казалось бы, не может играть особо существенной роли то, как именно устроен двигатель, приводящий в действие тот или иной механизм или станок. Если он дает ту мощность и ту быстроту, какая предписывается техническими условиями, то дальше для успешной работы механизма довольно безразлично, движет ли его нефтяной, паровой, бензиновый или электрический двигатель. Оказывается, это не так, и своеобразие мышечного волокна как универсального двигателя нашего тела настолько велико, что нельзя пройти мимо него, не приняв в расчет его важных последствий. Вся трудность использования поперечнополосатого мышечного волокна в качестве двигателя состоит в том, что он приводит кости в движение посредством тяги (мышечные волокна не способны толкать вследствие своей мягкости), но тяга эта не жесткая и точная, а упругая.
То, что мышечные волокна могут работать только в одну сторону, только тянуть, но не толкать, — это еще не беда. Если снова обратиться за примерами к технике, то, скажем, в автомобильных двигателях каждый из цилиндров тоже может работать только в одном из направлений: его шатун может толкать колено вала под действием взрывных газов и не может тянуть его. В машинах этот недочет покрывается тем, что в ряд ставится по меньшей мере два цилиндра: когда один толкает, в другом шатун возвращается обратно на холостом ходу. Так же организовано и обслуживание суставов нашего тела:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики