ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Чтобы трансформировать инвариантную репрезентацию в какой-то прогноз, ежесекундно надо решать, куда должен идти сигнал, направленный вниз по иерархии. Слой 1 обеспечивает возможность конвертирования инвариантного представления в более специфическую и конкретную репрезентацию. Например, вы можете воспроизвести Геттисбергскую речь как в устной, так и в письменной форме. Общая репрезентация трансформируется двумя разными способами: первый – для устной, а второй – для письменной формы. Горизонтальный поток активности в слое 1 обеспечивает механизм для осуществления такого процесса. Чтобы инвариантные представления высокого уровня могли транслироваться вниз и принимать форму конкретных прогнозов, мы должны располагать механизмом, позволяющим потоку сигналов разветвляться в каждом слое. На эту роль как нельзя лучше подходит слой 1. Даже не зная о его существовании, мы могли бы предвидеть, что такой слой есть.



Рис. 6.8. Нисходящий информационный поток

И еще немного сведений из анатомии: аксоны, покидающие слой 6, окутаны оболочкой из белого жирового вещества, которое называется миелином. Это белое вещество выполняет ту же роль, что и изоляция на электрических проводах, – препятствует смешиванию сигналов и повышает скорость их передвижения до 320 километров в час. Аксоны избавляются от белого защитного вещества, попадая в новую колонку нейронов слоя 6 в коре головного мозга.
И наконец, есть еще один непрямой способ связи зон коры головного мозга.
Но прежде я хотел бы вам снова напомнить об автоассоциативном свойстве системы памяти (о котором шла речь в главе 2). Как вы, вероятно, помните, автоассоциативные запоминания служат для сохранения последовательностей сигналов. Когда выходной сигнал группы искусственных нейронов передается назад с целью формирования входного потока для всех нейронов (и при этом обратная связь дополняется задержкой), то таким образом сигналы учатся последовательно двигаться друг за другом. По моему мнению, кора головного мозга использует подобный механизм для сохранения последовательностей, но в нем присутствуют еще некоторые особенности. Вместо того чтобы формировать автоассоциативные последовательности из искусственных нейронов, она формирует их из колонок коры головного мозга. Исходящие данные из всех колонок передаются назад, в слой 1. Выходит, слой 1 располагает свежей информацией о том, какие колонки зоны коры головного мозга только что были активными.
Рассмотрим элементы, изображенные на рис. 6.9. Ученым давно известно, что нейроны особо крупных размеров слоя 5 моторной коры (зона M1) непосредственным образом связаны с мышцами и моторными зонами спинного мозга – они обеспечивают управление вашими мышцами и передвижение. Каждый раз, когда вы говорите, печатаете, выполняете любые самые сложные действия, эти клетки посылают высококоординированные импульсы, заставляя сокращаться ваши мышцы.
Совсем недавно ученые открыли, что крупные нейроны слоя 5, возможно, выполняют какие-то функции и в других частях коры головного мозга, а не только в моторных зонах. Например, крупные нейроны слоя 5 зрительной зоны имеют проекции в зоне, отвечающей за движения глаз. Сенсорные зрительные зоны V2 и V4 не только занимаются обработкой зрительных входных сигналов, но также помогают предопределять движение глаз, а следовательно, управляют тем, что вы видите. Крупные нейроны слоя 5 присутствуют в каждой зоне коры головного мозга, что наводит на мысль об их немаловажной роли во всех типах движений.
Аксоны этих нейронов не только участвуют в формировании поведения, они разветвляются надвое. Одно ответвление идет к таламусу, изображенному на рис. 6.9 в виде овальной фигуры. Таламус человека находится в центре головного мозга, под корой, сверху «старого мозга», и окружен белым веществом. Размером и формой он похож на два маленьких птичьих яйца. Все зоны коры головного мозга направляют многочисленные аксоны в таламус, от него тоже исходят аксоны в обратном направлении. Науке известно достаточно об этих связях, но сам таламус очень сложен по своей структуре, и его роль до сих пор мало изучена. Таламус необходим для того, чтобы вести нормальный образ жизни: его повреждение приводит к устойчивому «растительному» состоянию.



Рис. 6.9. Как посредством таламуса сообщаются текущее состояние и текущее моторное поведение

Существуют несколько путей от таламуса к коре головного мозга, но сейчас лишь один из них представляет для нас интерес. Он начинается с крупных нейронов слоя 5, проецирующихся на группу клеток таламуса, считающихся функционально неспецифическими. Аксоны этих неспецифических клеток идут назад, в слой 1 множества различных зон коры головного мозга. Например, нервные клетки слоя 5 зон V2 и V4 посылают аксоны к таламусу, а таламус, в свою очередь, отправляет информацию назад к слою 1 зон V2 и V4. Аналогичный процесс происходит и в других зонах коры головного мозга. Клетки слоя 5 множества корковых зон посылают сигналы в таламус, который, в свою очередь, отсылает назад информацию в слой 1 этих же самых и связанных с ними зон. Я считаю, что такой круговорот полностью дублирует обратную связь с задержкой, которая позволяет автоассоциативной памяти усваивать последовательности сигналов.
Только что я упомянул о двух источниках входной информации, поступающей в слой 1. Высшие зоны коры головного мозга возбуждают активность в слое 1 более низких зон коры. Активные колонки в пределах одной зоны возбуждают активность в пределах слоя 1 той же зоны через таламус.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики