ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Сначала немного нагреются недра, а там, глядишь, и весь шар покраснеет, засветится и засверкает. Превратится сжимающийся плазменный шар в пылающую звезду…
Впрочем, не надо, как говорится, эмоций! Посчитаем, прикинем… Если бы Солнце под действием собственной силы тяжести сжималось со скоростью 30 метров в год, оно бы «просветило» лет этак миллионов тридцать. Опять мало! По новым данным науки, Солнечная система существует, по крайней мере, четыре с половиной миллиарда лет. Миллиарда! Представляете?
Долго, очень долго источник солнечной энергии оставался для ученых загадкой. А потом в лабораториях физиков началось его постепенное разгадывание. В 1896 году французский физик А. Беккерель открыл радиоактивность. Помните — так мы называем самопроизвольное превращение неустойчивых атомных ядер в ядра других элементов. Потом А. Эйнштейн установил зависимость массы и энергии. Это позволило английскому астроному и иностранному члену-корреспонденту Академии наук СССР А. Эддингорну выдвинуть идею прямого перехода массы Солнца в энергию. Правда, как это могло происходить, никто не знал.
Примерно в ту же пору неистовый и громоподобный Э. Резерфорд наблюдал первые искусственные превращения ядер. На лабораторной установке ядра атомов азота при бомбардировке их ядрами гелия иногда вдруг глотали эти «микробомбы» и превращались в ядра атомов кислорода, излучая лишний протон. Это было чудесно и совершенно непонятно. Картина стала проясняться, когда ученик Резерфорда Дж. Чедвик открыл нейтрон, а советский и немецкий физики Д. Иваненко и В. Гейзенберг независимо друг от друга построили модель атомного ядра из протонов в нейтронов. В 1939 году немецкий физик X. Бете, бежавший от фашистов сначала в Англию, а затем в США, теоретически показал, что в солнечных недрах должны существовать, по крайней мере, два вида реакций превращения водорода в гелий. Первая и основная — слияние двух протонов и образование тяжелого изотопа водорода — дейтерия, с излучением позитрона и нейтрино. И затем переход дейтерия в гелий с образованием новых свободных протонов. При этом количество высвобождающейся энергии оказывалось примерно в миллион раз больше, чем при химической реакции горения. Вторым типом реакции был углеродно-азотный цикл, который шел при более высоких температурах, очевидно, в самом солнечном ядре.
Прекрасно! Отныне, казалось, тайна Солнца разгадана. Ядерные реакции обеспечивали нашему светилу десять миллиардов лет жизни, что вполне устраивало физиков. Так что можно было успокоиться. Кстати, а что будет через оставшиеся пять миллиардов лет? Ядро Солнца к тому времени сожмется до такой степени, что температура и плотность в нем позволят ядрам гелия объединяться и образовывать углеродные ядра. Солнечная оболочка при этом распухнет до орбиты Венеры. И наше светило превратится в красного гиганта. На Земле к этому времени станет, увы, слишком жарко для жизни. Но до этого катастрофического периода время еще есть.
Как же работает Солнце? Во-первых, «ядерный котел» нашего светила занимает не так уж много места — примерно 2 процента объема в центре. Но в нем сосредоточено 50 процентов всей массы. Каждую секунду его топка потребляет около 5 миллионов тонн ядерного горючего, обеспечивая выход 4, 5 E33 эрг энергии. Много это или мало? Судите сами: Земля получает едва ли стомиллионную долю. И этого оказывается достаточно, чтобы обеспечить нашу жизнь!
Я не стану в деталях расписывать реакции внутри Солнца. Заинтересовавшийся сам их легко отыщет в Учебнике (например, Мартынов Д.Я. Курс общей астрофизики. М., 1971, с. 221-222). Скажу только, что ядра гелия чуть-чуть легче, чем сумма слившихся в них протонов. Этот-то крошечный избыток массы и превращается в энергию сначала в виде жестких гамма-квантов и нейтрино, Нейтрино тут же удирают, из Солнца, а гамма-кванты, сильно взаимодействуя с веществом, пробираются к поверхности и в конце концов превращаются в кванты оптического излучения. Они-то и греют, они-то и светят нам с вами. А теперь подведем предварительные итоги:
1. Сколько состояний вещества мы знаем?
Три обычных: твердое, жидкое, газообразное; и четвертое — плазма.
2. Что такое плазма?
Ионизованный газ, состоящий из «ободранных» атомных ядер и электронов.
3. Какую плазму мы знаем?
Низкотемпературную (Т=105 К), используемую в ионных приборах, газовых. лазерах, плазмотронах, МГД-генераторах, плазменных двигателях, а также в плазменной металлургии, обработке и в бурении. Высокотемпературную (Т=106-103 К) из смеси дейтерия и трития, которая предполагается быть использованной для управляемого термоядерного синтеза — термояда.
4. Чем отличается плазма от обычного газа?
Частицы плазмы не самостоятельны, а представляют собой единый коллектив, систему. Разреженная лабораторная плазма всегда является системой неравновесной и стремится к саморазрушению.
5. Почему устойчивы звезды, состоящие из плазмы? Потому что звездные условия не чета лабораторным. На Земле их так просто не достигнуть.
Советские физики-теоретики первыми высказали идею, согласно которой горячую плазму можно попробовать изолировать от стенок камеры, сжав собственным магнитным полем. Мысль была настолько простой и очевидной, и решение казалось таким красивым, что сомнениям просто не оставалось места.
Предположим, что нам удалось в разреженном газе создать мощный электрический разряд. Естественно, что на всем его пути молекулы и атомы ионизуются и газ превратится в плазму. Но плазма — сама великолепный проводник для электричества, и потому ток в ней будет нарастать.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики