ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Поэтому, как правило, прочность маховика используют всего на 1/3, что во столько же раз снижает его энергоемкость, а стало быть, и пробег гиробуса. Вот откуда те самые 4-6 км, о которых упоминалось выше.
Итак, по каким причинам нельзя накопить в обычном маховике больше энергии? Во-первых, это малая прочность материала, из которого он изготовлен. Крупные отливки или поковки даже из лучших сортов стали не слишком прочны. В таких изделиях невозможно избежать мельчайших дефектов, сильно уменьшающих прочность всего маховика. Во-вторых, чем прочнее литой или кованый маховик, тем опаснее последствия в случае его разрыва, и тем больше запас прочности следует закладывать при его проектировании.
«А что, если изменить форму маховика? – подумал я. – Например, разместить всю массу на периферии, превратив маховик в тяжелый обод, связанный с центральной частью тонкими спицами, как в велосипедном колесе?»
Оказывается, специалисты уже это сделали. По сравнению с кругом древнего гончара и впрямь получилось лучше. Такой маховик накапливал энергии в каждом килограмме своей массы раза в полтора больше. Еще лучше накапливал энергию маховик в виде диска без отверстия, но к нему трудно крепить вал. Однако потом точные расчеты показали, что выгоднее помещать массу не дальше от центра, а, наоборот, ближе к центру, вследствие чего появились маховики, тонкие по краям и утолщающиеся к середине, – диски «равной прочности». Как это ни удивительно, но энергии они могли накопить в два раза больше, чем обод со спицами, и в три раза больше, чем гончарный круг, при той же массе маховика.

Маховики различных форм
Так я пришел к важному для себя заключению: энергия каждого килограмма массы маховика зависит от его формы и прочности! Уже позже, по окончании института, я доказал математически существование этой зависимости, но еще раньше, в школьные годы, подсчитал, что если при изменении формы маховика – от самой худшей к самой лучшей – энергия возрастет незначительно, максимум в три раза, то при многократном повышении прочности во столько же раз увеличится и плотность энергии, причем это увеличение ничем не ограничено. Правда, тут получался порочный круг. Непрочный, например глиняный, маховик накапливает мало энергии, но разрыв его не так уж опасен, а прочный, скажем, стальной, может накопить большую энергию, однако разрыв его столь опасен, что приходится заботиться о повышении запаса прочности. А это опять-таки равносильно снижению прочности.
Конструкторам маховиков никак не удавалось вырваться из этого замкнутого круга, поэтому маховики играли вторую, если не третью, роль среди накопителей энергии…
Одним выстрелом – двух зайцев
Решение я нашел не сразу. Долго старался всякими хитроумными способами увеличить прочность маховика – ничего не выходило. Попытки уменьшить последствия разрыва надрезанием обода на мелкие части – чтобы осколки были поменьше, тоже ни к чему не привели. Я вспомнил, что так же надрезают корпуса гранат-лимонок, но безопаснее от этого они не становятся. Напротив, осколков прибавилось, и убойная сила гранаты увеличилась.
Помогли мне здесь, как это ни странно, занятия гиревым спортом. Чтобы укрепить кисти рук, мы клали на два крючка ломик и медленно наворачивали на него тоненький стальной тросик с тяжелой гирей на конце. Свитый из проволок, этот тросик никогда не рвался сразу, а лишь постепенно, проволочка за проволочкой. Разумеется, о высокой прочности стальных проволок и свитых из них тросов я знал и раньше, но до сих пор это как-то не увязывалось в сознании с массивным маховиком. И вот однажды, когда заброшенный на антресоли тросик случайно попался мне на глаза, я чуть было не воскликнул: «Эврика!» – и решил: маховик нужно делать из троса!
Я взял кусок троса в метр длиной, зажал его посередине в кольцевом зажиме – оправке, а саму оправу посадил на вал. Получился хоть и необычный, но маховик. Такие маховики я назвал супермаховиками. В чем преимущества супермаховика? Если вращать вал, то трос, как и обычный маховик, накопит кинетическую энергию. При этом частицы троса, стремясь двигаться по инерции, будут все сильнее растягивать его, пытаясь разорвать. Наибольшая нагрузка тут приходится на середину троса. При увеличении скорости сверх меры трос начнет рваться, но рваться по частям, по одной проволочке. А тоненькие проволочки не способны пробить даже легкий защитный кожух. Стало быть, разрыв супермаховика из троса не причинит большого вреда!

Супермаховик из троса
Однако это еще не все. Дело в том, что огромная прочность проволочек дает возможность такому супермаховику накопить значительное количество энергии. Если прочность стальной струны выше прочности монолитного стального куска раз в пять, то при прочих равных условиях во столько же раз больше накопит энергии супермаховик из струны по сравнению с обычным маховиком той же массы. Но ведь условия-то совсем не одинаковые!
Обычный литой маховик, разорвавшись, способен наделать много разрушений, а разрыв супермаховика снаружи даже и не заметишь. Выходит, супермаховику не нужен слишком большой запас прочности, и его можно понизить примерно вдвое по сравнению с маховиком. То есть получается, что супермаховик из троса может накопить в каждом килограмме массы в 10 раз больше энергии, чем обычный стальной маховик. И при этом его разрыв не представляет опасности для людей! Эти качества, присущие именно супермаховику, – высокая плотность энергии и безопасный разрыв – приблизили его к «энергетической капсуле».
Несмотря на то что я был необычайно рад своей находке, идея вращать трос мне не очень нравилась.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики