ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

 

А теперь, – продолжал я, нарастив треугольник, – представь себе, что шары у нас не нумерованные. Сможешь ты сказать, сколько шаров пошло на постройку этого треугольника?
– Ну конечно! – фыркнула девочка. – Возьму да сосчитаю.
– Это потому, что треугольник наш невелик. А если б он был много больше? Ведь мысленно его можно продолжить до бесконечности!
– Да, – сказала девочка озадаченно, – тут, пожалуй, со счёта собьёшься…
– Ничего, – сказал я. – У нас-то шары нумерованные! И потому мы можем сразу, ничего не пересчитывая, сказать, сколько шаров пошло на постройку треугольника из двух строк, из трёх, из двадцати, из тысячи, из миллиона… Для этого надо лишь посмотреть, какой шарик стоит справа, в конце последней строки. В первой строке это, конечно, № 1. Один шар мы тоже условно принимаем за треугольник. Во второй – № 3, в третьей – № 6, в четвёртой – № 10, в пятой – № 15, в шестой – № 21, в седьмой – № 28, в восьмой – № 36, в девятой – № 45, в десятой – № 55. Эти-то числа, указывающие, сколько шаров ушло на постройку каждого треугольника, называют в математике треугольными.
– А есть и четырёхугольные? – поинтересовалась девочка.
– Безусловно. Но называют их квадратными. И это уже совсем другой ряд чисел. Он образуется по другому закону. В ряду треугольных чисел каждое новое число обраауется так: первое треугольное число-1. Чтобы получить второе, прибавляем к единице следующее число натурального ряда 2: 1+2=3. Чтобы получить третье, надо прибавить к трём следующим после двух число натурального. ряда: 3+3=6. Далее, поступая каждый раз так же, получаем числа 10(6+4), 15(10+5), 21(15+6), 28(21+7), 36(28+8), 45(36+9), 55(45+10). Как видишь, каждое второе слагаемое в скобках есть следующее по порядку число натурального ряда. Ряд четырёхугольных чисел образуется иначе. Здесь к предыдущему квадратному числу всякий раз прибавляется не просто порядковое натуральное, а порядковое нечётное число. То есть взятое не из натурального ряда 1, 2, 3, 4, 5, 6 и т. д., а из ряда 1, 3, 5, 7, 9, 11 и т. д.
Но девочке надоело слушать, и она перешла от слов к делу: выложила квадрат из четырёх шаров и тут же заявила, что первое квадратное число – это 4.
– Ошибка, – заметил я. – Ты пропустила единицу. По правилам игры все фигурные числа непременно начинаются с фигуры, которая условно изображена шариком № 1. Во-вторых, почему ты думаешь, что 4 – число квадратное?
– Да потому, что оно стоит в последнем ряду справа, – ответила она.
Я усмехнулся и увеличил квадрат, пристроив справа к первой горизонтальной строке шар № 5, ко второй – № 6, а внизу прирастил ещё одну строку из шаров № 7, 8, 9. При этом шар № 4 оказался уже не в конце строки, а внутри квадрата. Девочку зто озадачило. Я снова увеличил квадрат. Теперь крайним справа оказался шар № 16. Потом № 25. Потом № 36…
И тут стало ясно, что квадратные числа расположены не в конце каждой строки, как в треугольнике, а наискосок, по диагонали. И это 1, 4, 9, 16, 25, 36 и т. д. Легко понять, что каждое следующее квадратное число есть сумма предыдущего и очередного нечётного числа натурального ряда: 4 (1+3), 9(4+5); 16(9+7), 25(16+ 9), 36(25+11) и т. д.
Любопытно, что каждое следующее квадратное число есть квадрат порядкового числа натурального ряда: 4=22; 9=32; 16=42; 25 = 52; 36=62 и т. д. И всякий раз основание степени указывает, из скольких строк построен квадрат. В первом 1 шар и 1 строка, во втором 4 шара и 2 строки, в третьем 9 шаров и 3 строки… Ну и так далее…
– Занятная игра, – вздохнула девочка, – но какая от неё польза?
– Такая же, как и от любой другой, – сказал я, пожав плечами. – Прежде всего, игра доставляет удовольствие. Но в то же время и тренирует наш мозг, нашу логику. А уж математические игры в особенности! Они приучают нас подмечать числовые зависимости, а это иногда ведёт к нешуточным последствиям. Такая сложная отрасль математики, как теория вероятностей, началась именно с игры, с желания угадать вероятность успеха. Что же до фигурных чисел, так ими увлекались ещё в древности. И это тоже привело к интересным открытиям. К примеру, древнегреческий математик Диофант установил, что если любое треугольное число умножить на 8, а потом прибавить к произведению единицу, то при этом обязательно получится число квадратное.
Конечно, девочка захотела это проверить. Она умножила треугольное число 3 на 8, получила 24, прибавила единицу и… получила квадратное число 25.
Я рассказал, что фигурными числами занимался ещё и Ферма. И он установил, что любое натуральное число можно представить суммой либо двух, либо трёх треугольных. Это легко проверить на тех треугольных числах, которые мы знаем: 1, 3, 6, 10 15, 21, 28, 36.
Возьмём натуральное число 17. Его можно представить суммой семнадцати единиц. Но это будет наибольшее число треугольных слагаемых. А Ферма имел в виду наименьшее. Ясно, что на сей раз это 15+1+1. Или: 10+6+1. На меньшее число треугольных слагаемых 17 не раскладывается. А вот число 20 может быть представлено в виде суммы двух треугольных чисел: 10+10…
– Посмотрите, – перебила меня девочка, – наш дорогой Главный терятель выложил шарики горкой!
– Лучше бы сказать, – пирамидкой, – уточнил тот. – Я получил её, положив в основание треугольник, состоящий из трёх шаров под номерами 1, 2, 3, а номер 4 положил сверху. И получил первые пирамидальные числа 1 и 4…
– Ничего подобного, – сказала девочка, – число 4 квадратное.
– Как видишь, не только квадратное, – возразил я. – Следующее по порядку пирамидальное число 10 в то же время и треугольное. Его мы получим, построив пирамиду с треугольным основанием из трёх строк и шести шаров под номерами с первого по шестой (№ 1–6). На этот треугольник нарастим меньший – из двух строк и трех шаров (№ 7, 8, 9).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики