ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

 

Кислород помешал бы протеканию химических реакций, а окисление разрушило бы любые органические молекулы, которым удалось бы сформироваться.
Несмотря на эти доводы, эволюционисты продолжают считать, что компоненты живых организмов могли сформироваться сами по себе на ранних этапах истории Земли. Давайте более подробно рассмотрим некоторые из их спекулятивных теорий о том, как это могло произойти. Данные теории можно разделить на три категории: теории происхождения жизни в результате случайности, в результате естественного отбора и самоорганизации.

Случайность

Некоторые эволюционисты утверждают, что белки, состоящие из длинных цепочек блоков-аминокислот, возникли в результате случайных совпадений на молекулярном уровне. Но это утверждение вызывает несколько очень серьезных возражений. Представим себе простую молекулу белка, состоящую из 100 блоков-аминокислот. Чтобы белок мог нормально функционировать в живом организме, все связи между аминокислотами должны быть пептидными. Аминокислоты могут быть связаны друг с другом разными способами, из которых пептидный способ связи встречается лишь в половине случаев. Таким образом, вероятность получения 100 аминокислот с пептидными связями равна 1:1030 (1 к 10 000 000 000 000 000 000 000 000 000 000). Кроме того, каждая молекула аминокислоты имеет левостороннюю L-форму (от латинского laevus – «левый») и правостороннюю D-форму (от латинского dexter – «правый»). Эти две формы являются как бы зеркальными отражениями друг друга, как левый и правый ботинки или левая и правая перчатки. Все белки в живых существах состоят из блоков левосторонних аминокислот. Но в природе левосторонние и правосторонние аминокислоты встречаются одинаково часто. Вероятность получения цепочки из 100 левосторонних аминокислот опять же равна 1:1030. Такова же вероятность выпадения монеты одной стороной 100 раз подряд. Аналогичным образом, вероятность возникновения цепочки из 100 левосторонних аминокислот с пептидными связями между ними равна 1:1060, что на доступном отрезке времени практически сводит эту вероятность на нет.
Но даже если все аминокислоты связаны пептидными связями и все они левосторонние, этого все равно недостаточно, чтобы получить функциональный белок. Неверно считать, что любая комбинация аминокислотных блоков дает в сумме белок, который может функционировать в составе клетки. Нужные аминокислоты должны соединяться в строго определенном порядке (Meyer. 1998. P. 126). Вероятность того, что это произойдет, сама по себе невероятно низка – около 1:1065 (1065 – таково количество атомов в нашей галактике). Иллюстрируя эту вероятность на наглядном примере, биохимик Майкл Бехе утверждает, что получить последовательность из 100 аминокислот, которые функционировали бы в качестве белка, – все равно, что отыскать одну помеченную песчинку в пустыне Сахара три раза подряд (Behe. 1994. Pp. 68–69). Если же учесть и другие факторы (необходимость наличия исключительно пептидных соединений и левосторонних аминокислот), то вероятность снижается до 1:10125. Излишне говорить, что такая вероятность ставит под вопрос случайное возникновение жизни из химических элементов.
Чтобы избежать такого заключения, некоторые ученые призывают на помощь теорию существования бесконечного множества вселенных. Но у них нет никаких доказательств существования даже одной вселенной, помимо нашей. Не объясняют они и то, как могут стабильные молекулы образоваться в этих воображаемых вселенных (стабильные молекулы необходимы для существования жизни, наблюдаемой в этой вселенной). В дальнейшем мы рассмотрим данную тему более подробно.

Eстественный отбор

Некоторые ученые, такие, как Опарин (Oparin. 1968. Pp. 146–147), выдвинули предположение, что появлению функциональных белков способствовал естественный отбор аминокислотных цепочек (из которых они состоят), повышающий вероятность их возникновения. Другими словами, формирование протеинов в этом случае не является полностью случайным. Но эта теория имеет два серьезных недостатка. Во-первых, такой первичный естественный отбор должен оперировать уже готовыми цепочками аминокислот, возникновение которых, опять же, списывается на случай. Как мы уже убедились, вероятность возникновения даже простых цепочек аминокислот с исключительно пептидными соединениями и левосторонними аминокислотами настолько ничтожна, что не заслуживает внимания. Во-вторых, естественный отбор подразумевает некую молекулярную репродуктивную систему. Вероятность формирования такой системы в результате случайности еще меньше, чем вероятность появления нескольких видов аминокислотных цепочек, на которые мог бы распространяться естественный отбор. Сама по себе репродуктивная система должна состоять из комбинации вполне определенных сложных молекул белка. Следовательно, предположения, подобные тому, что высказал Опарин, содержат неразрешимое противоречие. Предполагается, что в результате естественного отбора возникнут сложные белковые соединения, но сам по себе такой отбор требует наличия надежной молекулярной репродуктивной системы, а все известные системы такого рода сами состоят из сложноорганизованных молекул белка совершенно определенной структуры. Опарин предположил, что первые репродуктивные системы не обязательно были надежными и могли состоять из белковых молекул, не имеющих столь определенной структуры, как белки в современных организмах. Однако Мейер указывает на то, что «недостаток… определенности в структуре белка приводит к катастрофическим ошибкам, которые сводят на нет точность репродуцирования и, в конечном счете, делают естественный отбор невозможным» (Meyer.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики