ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

классическая точная механика – 1, лазерная микрообработка – 0,01, микромеханика и микроэлектроника – 0,0001, нанотехнология – 0,000001».
Рубеж поистине роковой для любых механизмов – расстояния менее 100 нм. Тогда заметно «слабеют» законы классической механики, и все больше дают себя знать межатомные силы, тепловые колебания, квантовые эффекты. Резко затрудняется локализация элементов устройств, теряет смысл понятие траекторий их движения. Короче, в подобных условиях вообще нельзя говорить о «механизмах», состоящих из «деталей».
Микромеханике повезло: ей с самого начала удалось устроиться «на плечах гиганта» – микроэлектроники, получив от нее практически готовую технологию массового производства. Ведь отработанная и постоянно развивающаяся технология сложнейших электронных микросхем лежит в том же диапазоне масштабов. И точно так же, как на одной пластинке кремния получают многие сотни готовых интегральных схем, оказалось возможным делать разом несколько сот механических деталей. То есть наладить нормальное массовое производство.
Кремний, используемый в микроэлектронике, стал основным материалом и для микромеханизмов. Тем более что здесь открылась замечательная возможность создавать и те и другие структуры в комплексе, в едином технологическом процессе. Производство таких гибридов оказалось настолько дешевым, что некоторые образцы быстро нашли применение в производстве самой массовой коммерческой продукции, например, кремниевый акселерометр, которым теперь снабжена одна из известных систем безопасности в автомобилях – надувной мешок.
Инерционный датчик этого прибора спроектирован Ричардом Мюллером из Калифорнийского университета. В общих чертах конструкция предельно проста: кремниевый стерженек диаметром в несколько микрон подвешен над отверстием, проделанным в кремниевой же подложке. Когда возникает ускорение, стерженек с подведенным к нему электрическим потенциалом начинает вибрировать и индуцирует сигнал, поступающий на обработку в микропроцессор, расположенный в десятке микрон по соседству. Достаточно резкое падение скорости (в момент удара при аварии) мгновенно фиксируется акселерометром, и он выдает команду на наполнение воздушной подушки в центре рулевого колеса, предохраняющей водителя от самой типичной травмы – удара о руль или ветровое стекло.
Японская корпорация «Тошиба» создала электромагнитный двигатель диаметром 0,8 миллиметра и весом 4 миллиграмма. Мощность его, разумеется, невелика, но достаточна для миниатюрных роботов, разработкой которых сейчас упорно занимаются ведущие компании страны под общим руководством министерства экономики и промышленности. Помимо «Тошибы» главную скрипку в этой программе играют корпорации «Мицубиси электрик» и «Хитачи». Длина разрабатываемых ими роботов – от сантиметра до нескольких миллиметров. Человек будет заглатывать капсулу с таким устройством, и после растворения ее оболочки аппарат, повинуясь радиосигналам и вложенной в него программе, начнет самостоятельное движение по кровеносным сосудам, желудочно-кишечному тракту и другим путям.
Миниатюрные роботы предназначены для диагностики, проведения микроопераций, для доставки лекарств точно по назначению и в нужное время. Их предполагают использовать также для ремонта и смены батарей у искусственных органов.
Немецкая фирма «Микротек» уже создала прототип медицинского инструмента нового типа – миниатюрную «подводную лодку» для плавания по кровеносным сосудам. Под управлением врача она способна выполнять некоторые операции. Длина этого автономного зонда – 4 миллиметра, а диаметр – 0,65 миллиметра. Двигателя у него нет, винт приводится во вращение с помощью внешнего переменного магнитного поля, которое позволяет развивать скорость до одного метр в час. В дальнейшем микрозонд оснастят фрезой для снятия холестериновых бляшек со стенок сосудов. Он сможет переносить капсулы с лекарством в нужное место. Предлагается и еще один вариант – размещать на таких микроаппаратах генераторы ультразвука. Просвечивая органы пациента изнутри, врачи получат информацию, остающуюся недоступной при обычной диагностике.
Нашли применение и еще несколько скромных, но полезных микроприборов – например, встроенный непосредственно в подшипник измеритель скорости вращения или внутренние датчики артериального давления, сердечного ритма, содержания сахара в крови и других параметров организма, передающие информацию наружу радиосигналом.

Фуллерены

Самое твердое вещество в природе – алмаз. Это углеродное соединение имеет кристаллическую решетку в форме тетраэдра – пирамиды с четырьмя равновеликими треугольными гранями. Его вершины образованы четырьмя атомами углерода. Треугольник – очень жесткая фигура его можно сломать, но деформировать или смять нельзя. Именно поэтому прочность алмаза столь высока. В природе известны кристаллы с решеткой, состоящей не из атомов, а из молекул. Если молекулы достаточно велики и связи между ними сильны, то кристаллическая решетка оказывается чрезвычайно прочной. Этим условиям в полной мере отвечают фуллерены: имея диаметр больше 0,5 нм, они соединяются в кристалл с ячейками размером менее 1,5 нм.
Как это часто бывает, открытие фуллеренов не стало результатом целенаправленного поиска. Основное направление работ в лаборатории Р. Смолли в Университете Райса (Техас), где в 1980-е годы было сделано открытие, связанное с исследованиями структуры металлических кластеров. Методика подобных исследований основана на измерении масс-спектров частиц, которые образуются в результате интенсивного воздействия лазерного излучения на поверхность исследуемого материала.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики