ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Зондовые микроскопы имеют рекордное разрешение – менее 0,1 нм. Они могут измерить взаимодействие между поверхностью и сканирующим ее микроскопическим острием – зондом – и выводят трехмерное изображение на экран компьютера.
Методы зондовой микроскопии позволяют не только видеть атомы и молекулы, но и воздействовать на них. При этом – что особенно важно – объекты могут изучаться не обязательно в вакууме (что обычно для электронных микроскопов), но и в различных газах и жидкостях.
Изобрели зондовый – сканирующий туннельный микроскоп в 1981 году сотрудники Исследовательского центра фирмы ИБМ Г. Биннинг и Х. Рорер (США). Через пять лет за это изобретение они были удостоены Нобелевской премии.
Биннинг и Рорер попытались сконструировать прибор для исследования участков поверхности размером менее 10 нм. Итог превзошел самые смелые ожидания: ученым удалось увидеть отдельные атомы, размер которых в поперечнике составляет лишь около одного нанометра. В основе работы сканирующего туннельного микроскопа лежит квантово-механическое явление, называемое туннельным эффектом. Очень тонкое металлическое острие – отрицательно заряженный зонд – подводится на близкое расстояние к образцу, тоже металлическому, заряженному положительно. В тот момент, когда расстояние между ними достигнет нескольких межатомных расстояний, электроны начнут свободно проходить через него – «туннелировать»: через зазор потечет ток.
Очень важное значение для работы микроскопа имеет резкая зависимость силы туннельного тока от расстояния между острием и поверхностью образца. При уменьшении зазора всего на 0,1 нм ток возрастет примерно в 10 раз. Поэтому даже неровности размером с атом вызывают заметные колебания величины тока.
Чтобы получить изображение, зонд сканирует поверхность, а электронная система считывает величину тока. В зависимости от того, как эта величина меняется, острие либо опускается или поднимается. Таким образом, система поддерживает величину тока постоянной, а траектория движения острия повторяет рельеф поверхности, огибая возвышенности и углубления.
Острие перемещает пьезосканер, который представляет собой манипулятор из материала, способного изменяться под действием электрического напряжения. Пьезосканер чаще всего имеет форму трубки с несколькими электродами, которая удлиняется или изгибается, перемещая зонд по разным направлениям с точностью до тысячных долей нанометра.
Информация о движении острия преобразуется в изображение поверхности, которое строится по точкам на экране. Участки разной высоты для наглядности окрашиваются в различные цвета.
В идеале на конце острия зонда должен находиться один неподвижный атом. Если же на конце иглы случайно оказалось несколько выступов, изображение может двоиться, троиться. Для устранения дефекта иглу травят в кислоте, придавая ей нужную форму.
С помощью туннельного микроскопа удалось сделать ряд открытий. Например, обнаружили, что атомы на поверхности кристалла расположены не так, как внутри, и часто образуют сложные структуры.
С помощью туннельного микроскопа можно изучать лишь проводящие ток объекты. Однако он позволяет наблюдать и тонкие диэлектрики в виде пленки, когда их помещают на поверхность проводящего материала. И хотя этот эффект еще не нашел полного объяснения, тем не менее его с успехом применяют для изучения многих органических пленок и биологических объектов – белков, вирусов.
Возможности микроскопа велики. С помощью иглы микроскопа даже наносят рисунки на металлические пластины. Для этого используют в качестве «пишущего» материала отдельные атомы – их осаждают на поверхность или удаляют с нее. Таким образом в 1991 году сотрудники фирмы ИБМ написали атомами ксенона на поверхности никелевой пластины название своей фирмы – IBM. Букву «I» составили всего 9 атомов, а буквы «B» и «M» – 13 атомов каждую.
Следующим шаг в развитии сканирующей зондовой микроскопии сделали в 1986 году Биннинг, Квейт и Гербер. Они создали атомно-силовой микроскоп. Если в туннельном микроскопе решающую роль играет резкая зависимость туннельного тока от расстояния между зондом и образцом, то для атомно-силового микроскопа решающее значение имеет зависимость силы взаимодействия тел от расстояния между ними.
Зондом атомно-силового микроскопа служит миниатюрная упругая пластина – кантилевер. Причем один ее конец закреплен, на другом же конце сформировано зондирующее острие из твердого материала – кремния или нитрида кремния. При перемещении зонда силы взаимодействия между его атомами и неровной поверхностью образца будут изгибать пластину. Добившись такого перемещения зонда, когда прогиб остается постоянным, можно получить изображение профиля поверхности. Такой режим работы микроскопа, называющийся контактным, позволяет измерять с разрешением в доли нанометра не только рельеф, но и силу трения, упругость и вязкость исследуемого объекта.
Сканирование в контакте с образцом довольно часто приводит к его деформации и разрушению. Воздействие зонда на поверхность может быть полезным, например, при изготовлении микросхем. Однако зонд способен легко порвать тонкую полимерную пленку или повредить бактерию, вызвав ее гибель. Чтобы избежать этого, кантилевер приводят в резонансные колебания вблизи поверхности и регистрируют изменение амплитуды, частоты или фазы колебаний, вызванных взаимодействием с поверхностью. Такой метод позволяет изучать живые микробы: колеблющаяся игла действует на бактерию, как легкий массаж, не причиняя вреда и позволяя наблюдать за ее движением, ростом и делением.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики