ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

2, Приложение 3).
2. О работе ГЦН 2.1.
Эксперты реанимировали давно отвергнутую версию о срыве насосов. Не было срыва циркуляции:
– если при снижении давления насосы не срывало, то почему бы это произошло при росте давления?
– системой контроля зарегистрирована исправная работа насосов вплоть до резкого скачка мощности;
– насосы, запитанные от «выбегающего» генератора, сорвать никак не могло – нет причин;
– однако первыми отключились именно «выбегающие» насосы (см. ИНСАГ-7, Приложение I, табл. I-I), затем – запитанные от резерва. Это указывает, что причиной прекращения подачи теплоносителя стал резкий наброс мощности.
Есть и ещё доводы, однако, если экспертам этого недостаточно, то уж ничем их не убедишь.
2.2. Тот реактор действительно взрывался при срыве ГЦН. А это могло быть при разрыве паропроводов, при открытии и непосадке главных предохранительных клапанов, при МПА … Но винить в этом нужно только авторов реактора.
Чтобы закончить о ГЦН, остановлюсь:
2.3. Доклад, п. 2.8. «Более того, поскольку температура теплоносителя на участке от циркуляционных насосов до входа в активную зону изменяется незначительно, при весьма малом недогреве, температура внутри насосов и на всосе в них близка к точке кипения».
Какое-то странное объяснение прямого и ясного: температура на всасе насосов приближается к точке кипения при большом расходе теплоносителя из-за меньшего расхолаживания его питательной водой и увеличения потери напора в опускном тракте (см. рис. 1, Приложение 3).
2.4. Доклад, п. 2.9 . «После отключения турбины работа запитанных от неё насосов начала замедляться, поскольку скорость вращения турбины снижалась и падало напряжение связанного с ней генератора. Понижающийся расход через активную зону вызывал повышение паросодержания в активной зоне и обусловил появление первоначальной положительной обратной связи по реактивности, которая, по крайней мере отчасти, была причиной аварии».
– Снижение расхода на 10 % за 36 с выбега вызвало рост реактивности такой, с которым АР успешно справляется. Никакого увеличения мощности не было.
– Достаточно посмотреть график мощности, предоставленный в МАГАТЭ в 1986 г. Об этом же сказано в Приложении 1, п. 1-4. 6. 2. (ИНСАГ-7).
– Если мало, то попросили бы члена группы Е. Бурлакова и он представил бы расчёт от 1986 г. своего сотрудника А. Апресова (см. табл. 2, Приложение 3).
За время выбега плотность теплоносителя изменилась на 6 кг/м 3 (табл. 2, Приложение 3), что даёт рост реактивности порядка 24*10 -6 в реальных условиях скорость изменения реактивности бывает в несколько раз больше.
Так в принципе верная мысль без учёта фактических данных и хотя бы элементарных расчётов ведёт к необоснованным (ложным) выводам.
Таким образом, вопросы о недогреве теплоносителя, о срыве и выбеге ПЩ, равно и сам вопрос о выбеге ТГ, к аварии отношения не имеют. Если бы в самый последний момент отказались проводить эксперимент, то результат был бы тот же.

Как теперь ясно, ранее не раз были на грани катастрофы: вслед за срабатыванием А3 были случаи выпадения сигналов АЗМ и АЗС.
Их не должно быть, посчитали ложными не сумев осмыслить.
А это были фактические набросы мощности, вызываемые А3, не отмеченные самописцем СФКРЭ из-за инерционности используемых серебряных датчиков. А сигналы АЗМ и АЭС успевали выпадать, поскольку работают от менее инерционных ионизационных камер, но самопишущего прибора от них не было. Сравните с 26 апреля: в 23 мин 40 с кнопкой сброшена А3, через 3 с выпали сигналы АЗМ и АЗС. Здесь уместно высказать следующее: в Приложении II, глава Н-2. 5. 3. (ИНСАГ-7) сказано, что одна из расчётных моделей не воспроизводит такого разгона реактора, когда на третьей секунде от момента сбрасывания АЗ-5 появляются сигналы, превышающие уставки по мощности и скорости её нарастания. Возможно, но рассматривать надо не три, а почти четыре секунды, поскольку дискретность фиксации – одна секунда. Тогда (см. рис. 16.1), нет противоречий. Для пояснения сказанного: между двумя событиями 1994 и 1995 гг. промежуток времени может быть и два часа и два года без двух часов.
3. Оперативный запас реактивности
Авторы реактора, а с ними и эксперты МАГАТЭ, по нарастающей присваивают параметру ОЗР одну функцию за другой:
3.1 Возможность маневрировать мощностью.
3.2 Компенсация выгорания топлива.
Это естественные для всех реакторов функции, они оговорены в книгах и в правилах.
3.3 Регулирование энерговыделения по объёму реактора.
Тоже вроде бы естественная функция исходя из «непрерывного» режима перегрузки топлива и больших размеров, хотя РБМК – не единственный большой реактор.
3.4 Гарант работоспособности защиты реактора. Причём ограничения налагают не по максимуму, что было бы естественно, а по минимуму (?).
3.5 Работоспособность обеспечивается не только при определённом ОЗР, но ещё должна соблюдаться некая конфигурация стержней.
А вот это уже абсурд, нарушение всех норм проектирования. Конструкторы допустили явную ошибку в конструкции стержней, когда при движении в одну сторону они вносят реактивность разного знака. Сразу после аварии стержни были признаны негодными всеми, включая авторов, но, удивительно, конструкторы нашли поддержку экспертов.
Доклад, п. 5.1. «Положительный выбег реактивности мог произойти только вследствие особого положения стержней СУЗ».
Таких «особых положений» множество, а выбег реактивности произошёл только вследствие ошибочной конструкции стержней. При нормальной конструкции никаких «особых положений» нет и быть не может. Вопрос – зачем экспертам понадобилось защищать давно отвергнутое?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики