ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

 

Начиная с 70-х гг., не прекращаются поиски теории, обобщающей стандартную модель, в которой как сильные, так и электрослабые взаимодействия были бы объединены одной более широкой и спонтанно нарушенной группой симметрии.
Есть очевидное возражение против всякой подобной попытки объединения взаимодействий. В рамках любой теории поля интенсивность взаимодействия зависит от числовых параметров двух типов: от масс (если они есть) частиц типа W , Z , переносящих взаимодействие, и определенных чисел, называемых константами связи или константами взаимодействия и характеризующих вероятность испускания и поглощения частиц, подобных фотонам, глюонам, W и Z , в ядерных реакциях. Массы возникают в результате спонтанного нарушения симметрии, но константы взаимодействия – это числа, входящие в исходные уравнения теории. Любая симметрия, связывающая сильные, электромагнитные и слабые взаимодействия, даже после спонтанного нарушения будет приводить к точному равенству всех констант взаимодействия, т.е. к равенству интенсивностей сильных и электрослабых взаимодействий (если должным образом определить способ их сравнения). Кажущиеся различия между интенсивностями нужно будет тогда приписать спонтанному нарушению симметрии, приводящему к разнице в массах частиц-переносчиков взаимодействия, в полной аналогии с тем, как в стандартной модели разница между электромагнитными и слабыми силами обусловлена нарушением электрослабой симметрии, в результате которого у частиц W и Z получаются очень большие массы, а фотон остается безмассовым. Но ясно, что интенсивности сильных ядерных и электромагнитных взаимодействий не равны друг другу – сильные взаимодействия, как это следует из самого их названия, намного сильнее электромагнитных, даже несмотря на то, что оба этих взаимодействия переносятся безмассовыми частицами, глюонами и фотонами.
В 1974 г. возникла идея, как преодолеть указанное препятствие. На самом деле, константы взаимодействия всех типов зависят, хотя и очень слабо, от энергий процессов, в которых эти константы измеряются. В любой теории, объединяющей сильные и электрослабые взаимодействия, указанные константы взаимодействия должны быть обязательно равны друг другу при определенной энергии, однако значение этой энергии может существенно отличаться от тех значений, которые доступны в современных экспериментах. В стандартную модель входят три независимые константы взаимодействия (это одна из причин, по которой мы не удовлетворены этой моделью как окончательной теорией), так что само требование, что существует какая-то энергия, при которой все эти константы должны сравниваться по величине, является весьма нетривиальным. Накладывая это условие, можно предсказать одну связь между константами при энергиях существующих ускорителей, и это предсказание находится в разумном согласии с опытами. Хотя это всего лишь одно успешное количественное предсказание, но отсюда следует ободряющий вывод, что в этих идеях что-то есть.
Таким же способом можно оценить и ту энергию, при которой все константы взаимодействия становятся равными по величине. При энергиях современных ускорителей сильное взаимодействие намного превосходит по интенсивности все другие силы и, согласно квантовой хромодинамике, убывает с ростом энергии очень слабо. Поэтому предсказывается, что та энергия, при которой все взаимодействия в стандартной модели станут одинаково сильными, должна быть очень большой, порядка 1024эВ = 1015ГэВ (вычисления, сделанные в последнее время, приводят, скорее, к значению 1016ГэВ). Если действительно существует спонтанно нарушенная симметрия, объединяющая сильные и электрослабые взаимодействия, то должны существовать и новые тяжелые частицы, входящие наряду с W , Z , фотонами и глюонами в число переносчиков взаимодействия. Тогда энергия 1015ГэВ должна соответствовать массе этих новых сверхтяжелых частиц. Как будет видно ниже, в современных теориях суперструн не требуется предполагать существование отдельной новой симметрии, связывающей сильные и электрослабые взаимодействия, но константы этих взаимодействий сравниваются при той же энергии 1016ГэВ.
Может показаться, что это всего лишь очередное недостижимо большое число, но когда в 1974 г. была получена эта оценка, в головах физиков-теоретиков зазвучали колокола. Мы все знали о существовании другой очень большой энергии, естественно возникающей в любой теории, пытающейся объединить гравитацию с остальными силами в природе. При обычных условиях сила тяготения намного меньше, чем силы, порождаемые сильными, электромагнитными или слабыми взаимодействиями. Никто никогда не наблюдал никакого влияния силы тяготения на процессы, происходящие между частицами на уровне отдельных атомов или молекул, да и мало надежды на то, что это когда-нибудь станет возможным. (Единственная причина, по которой тяготение кажется достаточно большой силой в нашей повседневной жизни, связана с тем, что Земля состоит из очень большого числа атомов, каждый из которых вносит свой крохотный вклад в поле тяготения на поверхности Земли.) Однако согласно общей теории относительности все эффекты тяготения связаны не только с массой, но и с энергией. Именно поэтому фотоны, у которых нет массы, но которые имеют энергию, отклоняются гравитационным полем Солнца. При достаточно больших энергиях сила тяготения между двумя типичными элементарными частицами становится столь же большой, как и любая другая действующая между ними сила. Та энергия, при которой это происходит, составляет примерно 1019ГэВ.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики