ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Обычно после аннигиляции свет излучается с равной скоростью во всех направлениях. Представим процесс аннигиляции и выделения энергии упрощённо, в виде двух пучков, один бьёт в лево, другой вправо. Их суммарная мощность (mv^2)/2 + (mv^2)/2 в сумме это и будет (mv^2) при сравнении формулы энергии (mc^2), где v = 300 тысяч км в сек, можно сделать вывод, что по сути скорость света, есть не предел, а просто та скорость на которую хватает энергии вещества при полном преобразовании массы в энергию. Т. е. если бы энергоёмкость массы была выше, скорость света была бы быстрее. Поэтому даже сверхновые звёзды при взрыве не могут превзойти скорость света, у энергии есть конечная масса и энергоёмкость, которая не позволяет ей разогнать себя до скорости выше скорости света. Фотон же, не является элементарной частицей, а является элементарной порцией энергии которая если уж выделилась, должна быть потрачена, только на одно, на нагрев, но греть ей нечего, или набор скорости. Поэтому все элементарные порции энергии, случайно покинув в процессе излучения вещество, всегда тратят всю энергию на набор скорости, в миг своего образования, и потому не могут быть не подвижными. Фотон можно догнать, и лететь с ним рядом, он будет относительно неподвижным, но, дотронувшись до него любое тело не минуемо абсорбирует его, и если излучит, то снова со скоростью света. При этом не произойдёт нарушения закона о сохранении импульса, поскольку крайне малый импульс фотона будет вычтен, из поймавшего его тела. Трудно сказать каковы условия абсорбирования фотона, ясно одно, его можно абсорбировать на скоростях минимум в 2-3 раза превышающих скорость света, иначе бы мы не видели света звёзд навстречу которым мы движемся. При этом стоит отметить, что если два тела, врежутся друг в друга на скоростях выше скорости света, то они пройдут друг сквозь друга подобно нейтрино. При этом в случае, если хотя бы у одного из тел, будет чрезмерно высокая плотность, возможно столкновение друг с другом отдельных атомов и их аннигиляция, что может привести к печальным последствиям, например при попытке пролететь на сверхсветовом звездолёте через звезду, особенно нейтронную. Также при полёте на сверх световом звездолёте через фотосферу звезды, может быть абсорбировано значительное количество фотонов, что приведёт к быстрому нагреву корабля до Т=3000-4000 градусов. Причём сколь бы не был короток по времени контакт с данными фотонами, аппарат неизбежно должен нагреться до температур сопоставимых с теми, через зоны которых он будет пролетать, и нагреется не только его обшивка, но и всё, что внутри.
Но зато, подобный эффект отсутствия гравитационных взаимодействий на сверхсветовых скоростях позволит избежать необходимости наличия у сверхсветового звездолёта толстой и главное тяжёлой брони, способной длительное время отражать попадание атомов водорода и космических частиц. Ведь полёт сквозь галактику на скоростях близких к скорости света или такого порядка, подобен с попыткой полёта в атмосфере земли на скорости 10-12 тысяч километров в час. Потому что, хоть межзвёздный газ и крайне разряжен, но на таких скоростях, даже очень разряженный газ постоянно будет бомбардировать обшивку. И при таких бомбардировках будет происходить не только нагрев обшивки, но и превращение её ядер в другие. Молибден будет превращаться в технеций, титан в ванадий и так далее. Не весь сразу и не мгновенно, но отдельные атомы.
Что указывает на то, что сила гравитационного взаимодействии падает с ростом скорости. Да элементарно то, что с ростом скорости элементарных частиц в ускорителе, наблюдается видимость роста их массы. На самом деле масса не растёт, просто чем быстрее они двигаются, тем слабее воздействует на них поле ускорителя. Аналогично с массой покоя… Масса протона неизменна, и не важно движется он или нет, она абсолютно одинакова всегда, но если он хотя бы с минимальной скоростью движется относительно другого объекта, то это уже говорит о том что сила их гравитационного взаимодействия чуть падает.
Кстати эта теория особенно интересна для расчётов срока жизни вселенной, поскольку в старых стандартных расчётах учитывали лишь массу плотность скорость разлёта вещества после большого взрыва. Считая что вещество одинаково взаимодействует при разных скоростях, но по-видимому это не так, и надо учитывать, что две двигающиеся друг от друга галактики со скоростью 5 тыс километров в секунду, притягиваются друг к другу где-то на процент слабее, чем две другие аналогичной массы и на аналогичном расстоянии неподвижные.
Вопрос о том, увеличивается ли величина гравитационного взаимодействия при сближении двух частиц на больших скоростях или остаётся неизменной, как у частиц покоя, остаётся открытым. Причём возможны варианты, так например два двигающихся друг на встречу другу протона со скоростью близкой к световой, могут притягиваться как на 1% процент сильнее, чем если бы они прибывали в состоянии покоя, так и в миллион раз сильнее. И этот вопрос особенно интересен для тех, кто экспериментирует с получением антивещества на коллайдере, т. к. существует проблема, как попасть одним пучком протонов по другому, и если бы оказалось, что быстро приближающиеся друг к другу тела притягиваются существенно сильнее, чем покоящиеся, то это упростило бы задачу на тему, как попасть одним маленьким протоном в другой. Хотя эффект может оказаться и отрицательным, например протоны на расстоянии метра друг от друга, под действием значительной величины гравитационной постоянной до ускоряются и пролетают друг сквозь друга на скорости выше световой.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики