ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Начались работы по применению кислорода в цветной металлургии, при производстве цемента, бумаги…
Не было лишь одного – кислорода. Старые установки Линде – громоздкие и медлительные – не удовлетворяли непрерывно растущий спрос.
Замечательное изобретение академика Капицы – турбодетандер – решило эту проблему. Уже в первые послевоенные годы промышленность освоила выпуск новых машин – высокопроизводительных, портативных, удобных. Создание мощной (самой мощной в Европе) кислородной «базы» имело колоссальное значение для страны, для всех отраслей народного хозяйства…

СПОР ПРОДОЛЖАЕТСЯ

И снова – библиотека. Те же книги по металлургии, напечатанные на плохой бумаге (такие книги почему-то редко печатают на хорошей). Академик уехал, тепло попрощавшись и не сделав никаких предложений. Со Смолиным они, правда, о чём-то договорились. Но Смолин молчит. Скафандр по новым чертежам ещё не готов. Вот мы и сидим в библиотеке.
Не стану уверять, что после рассказа приезжего книги сразу показались нам верхом занимательности. Так, по-моему, и не бывает. Для меня книга становится интересной, когда есть идея. Читаешь, допустим, учебник химии и поражаешься: ну зачем столько писать об алюминии. Потом приходит мысль создать новый термит. Хватаешься за ту же книгу и не можешь понять: куда девались подробные описания? Каких-то несколько строчек, и всё. Неужели о таком важном металле, как алюминий, нельзя рассказать серьезно и обстоятельно…
На этот раз собственных идей у нас не было. Поэтому страстного, до зуда в пальцах, интереса к металлургии мы не испытывали. И всё-таки книги читались теперь другими глазами. За способами и конструкциями мы видели людей. И ощущали то, что великий Эйнштейн увидел в физике: «Это драма. Драма идей!»
Производительность заводов и установок металлургической, химической, топливной промышленности определяется скоростью химических реакций. Скорость же тем больше, чем выше концентрация веществ, участвующих в реакции. Воздух беден кислородом. Поэтому и процессы окисления идут сравнительно медленно.
Скорость зависит и от температуры. Чем выше температура, тем больше скорость.
Замена воздуха кислородом решает сразу обе задачи. Чистый кислород почти впятеро богаче «самим собой», нежели воздух. И применение его в большинстве случаев – простейший способ повысить температуру…
Что дает, например, кислород в доменном производстве? Обычно на каждую тонну выплавленного чугуна нужно подать в печь 2830 кубических метров воздуха (около 4 тонн!). Это количество надо перемещать, сжимать, нагревать. И всё затем, чтобы полезно использовать лишь его пятую часть. Применение кислорода резко уменьшает размеры всего воздушного хозяйства: компрессоров, труб, нагревателей.
Это лишь одна сторона дела. Кислород дает возможность повысить температуру в печи до 3000 градусов (вместо 1800). В результате руда плавится гораздо быстрее и легче восстанавливается. Высокая температура позволяет получать тугоплавкие и особо ценные сорта чугуна, содержащие 35–40 процентов кремния, 50–55 процентов хрома.
Однако и это не всё. В кислородной домне образуются газы, которые с успехом можно использовать во многих химических производствах – скажем, при синтезе аммиака. На каждую тонну чугуна – тонна аммиака. Тут уже трудно сказать, что главное.
С применением кислорода даже шлак перестает быть «шлаком». Из отходов производства он превращается в весьма ценный продукт. И всё это без дополнительных затрат топлива, без специальных агрегатов…
Большие преимущества даёт использование кислорода в мартенах и конверторах, в цветной металлургии. При получении серной кислоты кислород повышает производительность установки в пять-шесть раз; при производстве азотной кислоты – вдвое; ускоряет производство цемента, улучшает его качество.
Однако применение кислорода наталкивается на трудности. Иногда эти трудности очень значительны. Они-то и вызывают споры, ту самую «драму идей», без которой никогда, в сущности, не обходится рождение нового.
В этом смысле очень типична история вторжения кислорода в бессемерование.
Как известно, бессемеровский способ выделки стали появился в 1856 году, раньше мартеновского. Способ предельно прост. Через металлическую «грушу» – конвертор с расплавленным чугуном – продувают воздух. Воздух «выжигает» из чугуна часть углерода и примеси. Получается сталь. Дополнительного топлива не нужно, процесс питается «внутренним» теплом, теплом реакций. Скорость огромная: весь процесс занимает 20 – 30 минут. Идеал.
Но ещё несколько лет назад этим идеальным способом выплавлялось лишь около 4 процентов мировой стали. Основное количество получали в мартеновских печах, где и уголь расходуется, и процесс длится много часов, и оборудование гораздо сложнее и дороже. Логика…
К сожалению, логика есть. По крайней мере, была. У бессемеровского способа всего два недостатка, зато очень серьезных. Для конвертора годится не всякий чугун, лишь такой, в котором содержится определенное количество кремния и фосфора – ведь в конверторе они играют роль горючего. А на земном шаре очень мало руд, пригодных для выплавки такого чугуна.
Второй недостаток – низкое качество стали. При бессемеровании в кипящем металле растворяется много азота. Азот портит сталь, делает её хрупкой, ненадежной. Какими только методами не пробовали бороться с этим злом! Через металл продували, кажется, всё, что можно, – ацетилен, водород, углекислый газ, аргон, пар… Применяли вакуум. Пробовали добавлять алюминий и титан. Азот держался крепко, никакими силами его не удавалось «выгнать» из стали.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики