ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 




17.1. Вынужденное рассеяние света.

Случайные изменения плотности среды, обусловленные тепло-
выми движениями молекул (тепловые акустичекие волны), рассеи-
вают световую волну и модулируют ее по частоте, при этом
возникают сателлиты с частотами, равными сумме и разности час-
тот световой волны и тепловых акустичеких колебаний (спонтан-
ное рассеяние Мандельштама-Бриллюэна). Однако отношение интен-
сивности сателлитов интенсивности падающего излучения
составляет лишь 10 в минус шестой степени.

При увеличении интенсивности падающего излучения выше по-
рогового значения происходит следующее. Под действием электри-
ческого тока из-за явления электрострикации возникают импульсы
избыточного давления, достигающие в поле лазерного луча дес.
тыс. атмосфер. Возникает акустическая волна давления (гипарз-
вук, 10 в 10-ой степени Гц), изменяющая показатель преломления
по закону бегущей волны. Эти изменения показателя преломления
образуют в среде как бы дифракционную решетку, на которой и
происходит рассеяние световой волны. При этом интенсивность
сателлитов становися сравнимой с интенсивностью падающей вол-
ны, а количество их возрастает. Описанный эффект называется
вынужденное рассеяние Мандельштама-Бриллюэна.

При достаточно больших интенсивностях падающего излучения
нелинейная среда стать может генератором звука со световой на-
качкой. С помощью лазеров удается возбуждать мощные (до 10
квт) гиперзвуковые колебания во многих жидкостях и твердых те-
лах.

Свой нелинейный аналог и комбинационное рассеяние
(см."Поглощение и рассеяние"). При вынужденном комбинационном
рассеянии мощное световое излучение возбуждает в среде коге-
рентные колебания молекул, на которых и происходит его рассея-
ние с образованием суммарных и разностных сателлитов. Частота
наиболее мощного из них меньше частотоы падающего света на
частоту молекулярных колебаний.

Так, при рассеянии красного излучения лазеров в камере со
сжатым водородом, когда интенсивность достигает пороговой ве-
личины около 10 в 8-ой степени вт/см2, число компонентв рассе-
янном излучении настолько возрастает и их интенсивность нас-
только высока, что, луч, выходящий из газа, из красного
становится белым. Аналогичен опыт по ВКР в жидкостях, напри-
мер, в нитробензоле. Особенность здесь в том, что рассеянные
компоненты с различной длиной волны пространственно разделены
и образуют на экране цветные кольца.

Вынужденное расеяние (ВКР и ВРМБ) применяется, в основ-
ном, для последования структуры и свойств вещества, для изуче-
ния нелинейных процессов в средах. Используется также для на-
качки полупроводниковых ОКР, для управления параметрами
твердотельных ОКГ. Может использоваться для создания преобра-
зователей частоты мощного когерентного света в ультрафиолето-
вой, видимой и особено инфракрасной областях спектра


17.2. Генерация оптических гармоник.

При рассеянии интенсивного лазерного излучения в жидкос-
тях и кристаллах, помимо описанных выше боковых спектральных
компонент, обнаруживаются компоненты с частотами, в точности
кратными частоте падающего излучения (двухкратными, трехкрат-
ными и т.д.), называемые оптическими гармониками. В некоторых
кристаллах эти гармоники могут составлять до 50% рассеянного
излучения. Таким образом, если направить красное излучение ру-
бинового лазера (0,69 мкм) на кристалл дигидросфата калия, то
на выходе можно получить невидимое ультрафиолетовое излучение
(0,345 мкм).


17.3. Параметрическая генерация света.

Поместим нелинейный кристалл в оптический резонатор и
направим на него мощное световое излучение накачки. Одновре-
менно подадим на кристалл два слабых излучения с чатотами,
сумма которых равна частоте излучения накачки. При этом в
кристалле возникает генерация двух мощных когерентных световых
волн, частота которых равна частотам этих двух слабых излуче-
ний. В действительности же, кроме волны накачки, нет необходи-
мости ни в каких дополнительных излучениях, т.к. в кристалле
всегда найдутся два спонтанно излучающих фотона с соответству-
ющими частотами. Существенным является то, что при повороте
кристалла в резонаторе, частоты генерируемых волн могут плавно
перестраиваться, в сумме оставаясь равными частоте волны на-
качки. Это позволяет создавать оптические преобразователи,
квантовые усилители и генераторы, плавно перекрывающие широкий
диапазон излучений от видимого до далекого инфракрасного при
фиксированной частоте накачки.

ФРГ патент 1 287 229: Преобразователь частоты содержит
неинейный электрооптический двоякопреломляющий кристалл, через
который когерентный входной световой сигнал пропускается под
таким углом к оптичекой оси кристалла, что внутри кристалла
возникают два колебания с другими частотами. Эти колебания
согласованы между собой и в кристалле модулируются или регули-
руются по фазе одновременно.

Нелинейный кристалл расположен внутри оптического резона-
тора и подвергается не только электрооптической модуляции, но
и регулировке по температуре с целью подстройки частоты.

17.4. Эффект насыщения.

Так называют эффект уменьшения интенсивности спектральной
линии поглощения (или вынужденного излучения) при увеличении
мощности падающего на вещество внешнего электромагнитного из-
лучения.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики