ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Причиной эффекта насыщения является выравнивание на-
селенности двух уровней энергии, между которыми под действием
излучения происходят вынужденные квантовые переходы "вверх"
(поглощение) и "вниз" (вынужденное излучение). В случае погло-
щения при этом уменьшается доля мощности излучения, поглощен-
ного веществом. Абсолютная величина поглощаемой мощности при
этом, однако не падает, а увеличивается, стремясь к некоторому
пределу. В случае активного вещества с инверсией населенностей
эффект эффект насыщения приводит к уменьшению мощности вынуж-
денного излучения, что ставит предел величине усиления в кван-
товых усилителях.

Однако эффекту нашли широкое применение в лазерной техни-
ке, где он используется для модуляции добротности оптических
резонаторов с помощью просветляющихся под действием мощного
излучения светофильтров. Кроме того, эффект насыщения исполь-
зуется для создания инверсии населенностей в трехуровневых
квантовых системах.


17.5. Многофотонное поглощение.

Если эффект насыщения делает среду, непрозрачную для сла-
бого светового поля, прозрачной для сильного, то для оптически
прозрачных сред может иметь место обратная ситуация. Здесь ин-
тенсивное излучение может поглощаться гораздо сильнее чем сла-
бое. Некая аналогия фотохромному эффекту, однако механизм со-
вершенно иной. Он состоит в том, что при больших плотностях
излучения и элементарном акте взаимодействия света с веществом
могут одновременно поглощаться два или несколько фотонов, сум-
ма энергий которых равна энергии перехода.

Эффект многофотонного поглощения используется, в основ-
ном, в так называемой многофотонной спектроскопии, дающей до-
полнительную информацию о строении вещества, недоступную для
обычной спектроскопии.


17.5.1. Многофотонный фотоэффект.

Эффект состоит в том, что при высокой интенсивности све-
тового поля ионизация атомов может производить под воздействи-
ем излучения, для которого энергия кванта меньше энергии иони-
зации. Это обьясняется тем, что происходит одновременное
поглощение нескольких фотонов, сумма энергий которых больше
энергии ионизации атомов. Здесь просматривается некая анология
с антистоксовской люминесценцией (см."Люминесценция"). Следует
отметить, что, например, для двухфотонного фотоэффекта величи-
на тока в фотоэлементе пропорциональна квадрату мощности ла-
зерного излучения.


17.6. Эффект самофокусировки.

Известно, что первоначально параллельный пучок света по
мере рапространения в среде (включая и вакуум) расплывается за
счет дифракционных явлений. Это справедливо при малых интен-
сивностях света, пока еще среда остается линейной. с увеличе-
нием мощности светового пучка его расходимость начинает умень-
шаться. При некоторой критической мощности пучок может
распространяться, вообще не испытывая расходимости (режим са-
моканализации), а при мощности, превышающей критическую, пучок
скачком сжимается к оси и сходится в точку наа некотором расс-
тоянии от места входа в среду ставшую теперь нелинейной. Про-
исходит пройесс самофокусировки. Это расстояние, называемое
эффективной длиной самофокусировки, обратно пропорционально
квадратному корню из интенсивности пучка. Оно также зависит от
его диаметра и оптических свойств среды. Открытие эффекта са-
мофокусировки пренадлежит Г.А.Аскорьяну (открытие - 67).

Физические причины этого эффекта заключаются в изменении
показателя преломления среды в сильном световом поле. В это
изменение вносит свой вклад также эффекты, как электрострик-
ция, высокочастотный эффект Керра и изменение преломления сре-
ды за счет ее нагрева в световом пучке. Вследствии этих эффек-
тов, среда в зоне пучка становится оптически неоднородной;
показатель преломления среды определяется теперь распределени-
ем интенсивности световой волны. Это приводит к явлению нели-
нейной рефракции, т.е. переферийные лучи пучка отклоняются к
его оси, в зону с большей оптической плотностью. Таким образом
нелинейная рефракция начинает конкурировать с дифракционной
расходимостью. При взаимной компенсации этих процессов и нас-
тупает самоканализация, переходящая в самофокусировку при при-
вышении критической мощности пучка. Процесс самофокусировки
выделяется среди прочих нелинейных эффектов тем, что он обла-
дает "лавинным" характером. Действительно, даже малое увеличе-
ние интенсивности в некотором участке светового пучка приводит
к концентрации лучей в этой области, а следовательно и к до-
полнительному возрастанию интенсивности, что усиливает нели-
нейную рефракцию и т.д.

Отметим, что критические мощности самофокусировки относи-
тельно не велики (для ниробензола - 25 квт, для некоторых сор-
тов оптического стекла - 1 вт), что создает реальные предпо-
сылки использования описанного эффекта для передачи энергии на
значительные расстояния.

Интересно, что при самофокусировке излучение импульсных
лазеров в органических жидкостях пучок после "охлопывания"
распространяется не ввиде одного пучка, а распадается на мно-
жество короткоживущих (10 в минус 10-ой степени сек.) узких
(мкм) областей очень сильного светового поля (около 10 в 7-ой
степени в/см) - световых нитей. Это явление обьясняют тем, что
при самофокусировке лазерных импульсов нелинейная среда рабо-
тает как линза с изменяющимися во времени фокусными расстояни-
ями, и быстрое движение фокусов (скорости порядка 10 в 6-ой
степени м/сек.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики