ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 


Замечание 2. Ряды прямоугольников, полученные при данных
преобразованиях, можно рассматривать как временны&е ряды, а инварианты
преобразований, как инварианты сохраняющиеся во времени. Можно также
рассматривать множество прямоугольников, появившихся в результате
преобразований, как одновременно существующие. Тогда инварианты можно
рассматривать как инварианты, существующие на множестве (в пространстве)
многоугольников. В последнем случае это может быть неупорядоченное
множество объектов.
Имеются ли другие геометрические фигуры, остающиеся подобными исходной при
последовательном делении на две части? Да. При делении подобную фигуру (обе
половинки) дает равнобедренный прямоугольный треугольник. Приблизительно
такой же результат получается у кольца: изолированные или вложенные
концентрические кольца, соприкасающиеся внутри или касающиеся извне, либо
ортогонально сцепленные кольца (рис. 3, Г). Любой прямоугольный
треугольник делится на два подобных, но неравных прямоугольника.
В. Раздвоение других математических объектов. Как раздвоение единицы на два
взаимообратных сомножителя можно рассматривать равенство
1=аъ(1/а), где а - любое действительное число. Такое
преобразование неоднозначно. Дополнительные ограничения могут сузить
область допустимых для а значений. При а=*
(*=1,618...) константа золотого отношения 1/*=0,618..., т.
е. взаимообратные числа отличаются на единицу (раздваиваемое число).
Аналогично можно раздвоить единичное преобразование на два взаимо обратных:
Е=АъА"-1", где Е - единичное преобразование, переводящее объект
в самого себя; А - преобразование рассматриваемого класса объектов.
Примерами могут служить дифференцирование и интегрирование, левый и правый
повороты, логарифмическая и показательная функции и др.
Подобным же образом произведем раздвоение функции. В математике не
существует единичной функции, подобно единичному преобразованию, но
существуют взаимные функции. Графики взаимообратных функций симметричны
относительно биссектрисы первого квадранта в декартовой системе
координат. Уравнение этой биссектрисы y=x. Данную функцию и будем
называть единичной. В результате ее "раздвоения" всегда будут
получаться взаимообратные функции y=f(x) и x=f(y).
Особым случаем раздвоения единого (Е) являет выделение из него относительно
целой, далее неделимой части (Н) и части, подверженной дальнейшему
аналогичному делению (Д):
------------Картинка 1 стр. 35--------
---------------------------
Примерами могут служить бинарные ассиметричные систематики (корректирующие
коды. темпераменты и т. д.). Математической моделью такого раздвоения
является, в частности, цепная дробь, с помощью которой представляется число
*:
--------------Картинка 2 стр. 35----
--------------------------
II. 2. 5. Раздвоение понятий и множеств понятий. Дихотомия - это
деление объема понятия на два класса. исчерпывающих весь объем делимого
понятия. Дихотомии строятся по двум схемам: А и не-А и А
- В. Каждому из двух классов соответствуют понятия, которые могут
находится в логических отношениях отрицания или дополнительности. В
реальной действительности отношения между компонентами диалектической пары
не исчерпываются отношениями отрицания и дополнения, они носят более
разнообразные и диалектический характер. По определения дихотомическая
пара представляет собой полный набор понятий. Вместе с родовым понятием они
образуют элементарную простейшую иерархию. Здесь представляют интерес такие
вопросы:
1. Какие отношения (кроме указанных выше) могут существовать между
компонентами дихотомной пары?
2. Каков механизм превращения дихотомии в политомию?
3. Каковы механизм и результат объединения двух дихотомий и политомий?
Анализируя описанные примеры процесса раздвоения, можно выделить следующие
его особенности: неоднозначность, множественность возможностей; различие
видов противоположностей, получающихся в результате раздвоения; различие
отношений между целым и частями; зависимость результата от дополнительных
ограничений.
В практической и познавательной деятельности человека часто приходится
иметь дело с раздвоением множеств объектов различной природы (точек,
геометрических фигур, понятий). При аналогии с дифференциацией стимулов
можно говорить о дифференциации подмножеств в множестве, оценивать
соответствующие дифференциальные пороги, изучать процесс дифференциации,
который в зависимости от условий может быть более или менее трудным
субъективно. Процесс осознания наличия двух подмножеств в множестве,
формулирование диапазона эквивалентности может происходить постепенно,
первоначально может складываться представление либо о границе, либо о
центрах подмножеств. Процесс раздвоения еще более затрудняется в случае
открытых множеств с переменным составом переменных. В современной
психологии процесс дифференциации подмножеств в множествах только начинает
изучаться. Работы в этом направлении могут составить основу нового раздела
психофизики. Практически их значение несомненно.
II. 2. 6. Триады. Следующим шагом анализа является выделение триад в
составе объекта. Речь идет о том же объекте, в котором исследовались
противоположности.
Раздвоение приводит к разбиению множества на пересекающиеся подмножества.
При их сближении или расширении подмножества могут пересекаться. Область их
пересечения будет третьим компонентом, возникает триада. Третий компонент
по своему гнезду является промежуточным средним.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики