ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

 

Ответ дает более ранняя работа Хоровица и Строминджера, в которой показано, что для существ типа нас с вами, органам чувств которых прямо доступны лишь три развернутых пространственных измерения, «оборачивающиеся» вокруг трехмерной сферы 3-браны предстанут в виде гравитационного поля сродни полю черной дыры2). Этот факт не очевиден, и становится ясен только после тщательного изучения описывающих браны уравнений. Здесь, как и выше, сложно изобразить многомерную конфигурацию на двумерном рисунке, но примерное представление по аналогии с двумерными сферами можно получить из рис. 13.4. Видно, что двумерная мембрана может обернуться вокруг двумерной сферы (которая сама покоится внутри пространства Калаби-Яу, находящегося в некоторой точке пространства развернутых измерений).
Рис. 13.4. Когда брана обертывает сферу, покоящуюся в свернутых измерениях, она выглядит как черная дыра в обычных пространственных измерениях. Некто, наблюдающий эту точку сквозь развернутые измерения, почувствует брану по ее массе и заряду, и, как показали Хоровиц и Строминджер, судя по этим характеристикам, сможет сделать вывод, что перед ним черная дыра. Кроме того, в основополагающей работе 1995 г. Строминджер показал, что масса 3-браны, т. е. масса черной дыры, пропорциональна объему трехмерной сферы, которую она обертывает. Чем больше объем сферы, тем больше должна быть обертывающая ее 3-брана, и тем больше ее масса. Аналогично, чем меньше объем сферы, тем меньше масса обертывающей ее 3-браны. По мере сжатия сферы обертывающая ее 3-брана, которая выглядит, как черная дыра, становится легче. В момент, когда трехмерная сфера стягивается в точку, соответствующая черная дыра (соберитесь с духом!) становится безмассовой. На первый взгляд, это совершенно непостижимо (что это еше за безмассовая черная дыра?), но чуть ниже мы свяжем этот загадочный феномен со знакомой физикой струн.Во-вторых, напомним, что, как обсуждалось в главе 9, число отверстий многообразия Калаби-Яу определяет число низкоэнергетических (а, следовательно, имеющих малую массу) колебательных мод струны, которыми могут описываться перечисленные в табл. 1.1 частицы, а также типы взаимодействий. Но так как при конифолдных переходах с разрывом пространства число отверстий меняется (например, как на рис. 13.3, где отверстие тора исчезло в процессе разрыва/восстановления), можно ожидать и изменения числа колебательных мод малой массы. Действительно, после того, как Моррисон, Строминджер и я тщательно изучили этот вопрос, мы обнаружили, что при замещении сжимающейся трехмерной сферы в свернутых измерениях Калаби-Яу двумерной сферой число безмассовых колебательных мод струны возрастает ровно на единицу. (Пример, приведенный на рис. 13.3, где баранка превращается в мяч, может создать ложную иллюзию, что число отверстий, а, следовательно, и число мод, уменьшается. На самом деле, это артефакт маломерной аналогии.)Чтобы связать идеи, описанные в двух предыдущих параграфах, представим себе последовательность снимков пространства Калаби-Яу при постепенном уменьшении размеров некоторой сидящей внутри трехмерной сферы. Из первой идеи следует, что масса 3-браны, обертывающей трехмерную сферу и кажущейся нам черной дырой, будет уменьшаться и станет равной нулю в момент коллапса. Теперь, пользуясь второй идеей, мы можем ответить на поставленный выше вопрос о том, что означает обращение массы в ноль. Согласно нашей работе, новая безмассовая колебательная мода струны, возникающая при конифолдном переходе с разрывом пространства, на микроскопических масштабах описывает безмассовую частицу, в которую превращается черная дыра. Вывод такой: при эволюции многообразия Калаби-Яу, сопровождающейся конифолдным переходом с разрывом пространства, изначально ненулевая масса черной дыры уменьшается до нуля, после чего черная дыра превращается в безмассовую частицу (подобную фотону), которая на языке теории струн описывается определенной колебательной модой струны. Таким образом, в теории струн впервые удается установить прямую, точную и количественно неопровержимую связь между черными дырами и элементарными частицами. «Таяние» черных дыр Найденная связь между черными дырами и элементарными частицами по своей природе близка классу явлений, которые мы наблюдаем в повседневной жизни, и которые в физике называют фазовыми переходами. Простой пример фазового перехода упоминался в предыдущей главе: вода может существовать в твердом состоянии (лед), в жидком состоянии (жидкая вода) или в газообразном состоянии (пар). Эти состояния называют фазами воды, а превращения из одного состояния в другое — фазовыми переходами. Моррисон, Строминджер и я показали, что между фазовыми переходами и конифолдными переходами многообразий Калаби-Яу существует тесная математическая и физическая связь. Так же, как не видевшее жидкой воды или твердого льда существо не поймет, что перед ним две фазы одного вещества, физики ранее не понимали, что изучавшиеся ими черные дыры и элементарные частицы являются двумя фазами одной струнной материи. Подобно тому, как температура определяет фазу, в которой при нормальном давлении находится вода, топологический вид дополнительных измерений Калаби-Яу определяет то, в каком обличий предстанут перед нами определенные физические конфигурации в теории струн: как черные дыры или как элементарные частицы. В первой фазе — исходное многообразие Калаби-Яу (для определенности, аналог льда) — будет обнаружено присутствие черных дыр. Во второй фазе — другое многообразие Калаби-Яу (аналог воды) — черные дыры подверглись фазовому переходу, «растаяли», и перешли в фундаментальные колебательные моды струны.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики