ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

 

Хокинг понял, что для наблюдателя, уютно устроившегося на безопасном расстоянии от черной дыры, и регистрирующего совокупный результат этого непрерывно происходящего вокруг черной дыры разлучения пар, будет казаться, что из черной дыры исходит непрерывное излучение. Черные дыры светятся.Более того, Хокингу удалось вычислить температуру, которую наблюдатель приписал бы этому излучению: оказалось, что она определяется напряженностью гравитационного поля на горизонте черной дыры, в точном согласии с аналогией между черными дырами и термодинамикой3). Бекенштейн был прав, и результаты Хокинга показали, что его аналогию следует воспринимать всерьез. На самом деле результаты показали, что это даже не аналогия — это тождественность. У черной дыры есть энтропия. У черной дыры есть температура. И законы физики гравитации черной дыры — не что иное, как законы термодинамики в крайне необычных условиях. В этом состоял ошеломляющий результат исследований Хокинга 1974 г.Чтобы читатель понял, о каких масштабах величин идет речь, приведем пример: черная дыра с массой, втрое превышающей массу Солнца, будет, после учета всех эффектов, иметь температуру примерно 10-8 К.Не нуль — но только чуть теплее. Черные дыры не точно черны — но только чуть светлее. К сожалению, по этой причине излучение черной дыры очень слабое, и его невозможно обнаружить экспериментально. Однако есть исключение. Из вычислений Хокинга следует еще один факт: чем меньше масса черной дыры, тем выше ее температура, и тем сильнее ее излучение. Например, излучение черной дыры массой с небольшой астероид сравнимо с излучением водородной бомбы мощностью в миллион мегатонн, причем это излучение сконцентрировано на шкале электромагнитных волн в гамма-области. Ночами астрономы пытались поймать такое излучение, но улов был невелик: лишь несколько кандидатов с малыми шансами на успех. Это наводит на мысль, что если черные дыры с такими малыми массами и существуют, то они крайне редки4). Как часто шутит Хокинг, это плохо, так как если бы предсказанное излучение черных дыр обнаружили, Нобелевская премия была бы ему гарантирована5).По сравнению с этой мизерной температурой в миллионные доли градуса, вычисление энтропии черной дыры массой три массы Солнца дает грандиозное число: единицу с 78 нулями! И чем массивнее дыра, тем энтропия больше. Успех расчетов Хокинга недвусмысленно показывает, какой несусветный беспорядок творится внутри черной дыры.Но беспорядок чего? Как мы видели, черные дыры — крайне примитивные объекты, в чем же причина этого беспорядка? Здесь расчеты Хокинга полностью немы. Его частичное объединение теории относительности и квантовой теории можно использовать для вычисления значения энтропии черной дыры, но постичь ее микроскопический смысл с помощью такой теории невозможно. Почти четверть века величайшие физики пытались понять, какими микроскопическими свойствами черных дыр можно объяснить такое значение их энтропии. Без действительно надежного сплава общей теории относительности и квантовой теории могли возникать проблески ответа, но тайна так и оставалась нераскрытой. Ваш выход, теория струн! Но так было до конца 1996 г., пока Строминджер и Вафа, опираясь на более ранние результаты Сасскинда и Сена, не написали работу «Микроскопическая природа энтропии Бекенштейна и Хокинга», появившуюся в электронном архиве статей по физике. В этой работе Строминджеру и Вафе удалось использовать теорию струн для нахождения микроскопических компонентов определенного класса черных дыр, а также для точного вычисления вкладов этих компонентов в энтропию. Работа была основана на применении нового метода, частично выходящего за рамки теории возмущений, которую использовали в 1980-х и в начале 1990-х гг. Результат работы в точности совпадал с предсказаниями Бекенштейна и Хокинга и наносил последние штрихи на картину, начатую более двадцати лет назад.Строминджер и Вафа сосредоточили внимание на так называемых экстремальных черных дырах. Такие черные дыры наделены зарядом (можно считать его электрическим зарядом) и, кроме того, имеют наименьшую возможную массу, совместимую с этим зарядом. Как видно из приведенного определения, подобные черные дыры тесно связаны с рассмотренными в главе 12 БПС-состояниями. И Строминджер с Вафой выжали из этой связи все, что могли. Они продемонстрировали, что можно построить (теоретически, разумеется) экстремальные черные дыры, если выбрать конкретный набор БПС-бран (определенных размерностей), а затем связать эти браны, действуя по точной математической схеме. Строминджер и Вафа показали, что подобно тому, как можно построить (еще раз, теоретически!) атом, если взять набор кварков и электронов, а затем точно сгруппировать их в протоны и нейтроны с вращающимися по орбитам электронами, некоторые из недавно обнаруженных компонентов теории струн можно слепить вместе и получить определенные черные дыры.В реальном мире образование черных дыр является только одним из возможных вариантов гибели звезд. После того, как за миллиарды лет ядерного синтеза звезда сжигает весь запас ядерного топлива, она оказывается неспособной далее компенсировать сжимающую громадную силу гравитации направленным наружу давлением. Для широкого класса условий это приводит к катастрофическому взрыву огромной массы звезды: под действием собственной силы тяжести она коллапсирует, образуя черную дыру. Реальным процессам образования черных дыр Строминджер и Вафа противопоставили «конструктивный» подход. Они изменили точку зрения на образование черных дыр, показав, что их можно конструировать (в воображении теоретика) по строгому набору правил — путем кропотливой, неспешной и дотошной сборки в один механизм точного набора бран, открытых во время второй революции в теории суперструн.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики